python+pytorch_pytorch linear函数
pytorch,python,linear,函数
2025-03-13 21:27:30 时间
MSE:Mean Squared Error 均方误差
含义:均方误差,是预测值与真实值之差的平方和的平均值,即:
但是,在具体的应用中跟定义稍有不同。主要差别是参数的设置,在torch.nn.MSELoss中有一个reduction参数。reduction是维度要不要缩减以及如何缩减主要有三个选项:
‘none’:no reduction will be applied. ‘mean’: the sum of the output will be divided by the number of elements in the output. ‘sum’: the output will be summed.
如果不设置reduction参数,默认是’mean’
import torch
import torch.nn as nn
a = torch.tensor([[1, 2], [3, 4]], dtype=torch.float)
b = torch.tensor([[3, 5], [8, 6]], dtype=torch.float)
loss_fn1 = torch.nn.MSELoss(reduction='none')
loss1 = loss_fn1(a.float(), b.float())
print(loss1) # 输出结果:tensor([[ 4., 9.],
# [25., 4.]])
loss_fn2 = torch.nn.MSELoss(reduction='sum')
loss2 = loss_fn2(a.float(), b.float())
print(loss2) # 输出结果:tensor(42.)
loss_fn3 = torch.nn.MSELoss(reduction='mean')
loss3 = loss_fn3(a.float(), b.float())
print(loss3) # 输出结果:tensor(10.5000)
对于三维输入:
a = torch.randint(0, 9, (2, 2, 3)).float()
b = torch.randint(0, 9, (2, 2, 3)).float()
print('a:\n', a)
print('b:\n', b)
loss_fn1 = torch.nn.MSELoss(reduction='none')
loss1 = loss_fn1(a.float(), b.float())
print('loss_none:\n', loss1)
loss_fn2 = torch.nn.MSELoss(reduction='sum')
loss2 = loss_fn2(a.float(), b.float())
print('loss_sum:\n', loss2)
loss_fn3 = torch.nn.MSELoss(reduction='mean')
loss3 = loss_fn3(a.float(), b.float())
print('loss_mean:\n', loss3)
运行结果:
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/193287.html原文链接:https://javaforall.cn
相关文章
- 用python给女朋友表白_python绘制太阳花
- python格式化json文件_pycharm对齐线
- Python DB-API 规范及 MySQL Connector/Python 实现
- 一对兔子从出生后第三个月起每个月_兔子繁衍问题python
- 如何理解python报错信息_csb报错
- SPC(Statistical Process Control 统计过程控制)图——Python+JS实现
- python 基尼系数_Python计算
- python注释多行代码快捷键_python粘贴快捷键
- Python最强地理可视化库Cartopy安装教学
- Python-基础05-字符编码
- Python嵌套函数与匿名函数
- python开发环境搭建,pycharm安装运行[通俗易懂]
- Python基础14-内置模块
- Python进阶43-drf框架(五)
- python实现樱花[通俗易懂]
- mac如何卸载python_如何彻底卸载pycharm
- pycharm整理格式快捷键_python代码对齐快捷键
- Python-drf前戏38-前端Vue
- python换行符使用_python中怎么换行?「建议收藏」
- python anaconda和pycharm的区别_质量度三者关系